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Figure 1. Location map with field sites




Site 1: Foss-Eikeland
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Fig.2. A. Overview. B. Map of Rogaland, showing the orientation of valleys and fjords east and northeast of the Jeeren area. C. Detailed map of
Jeeren presented as a 2D hill-shaded map with light from northeast. Sections have been investigated along two profiles. Profile A stretches from
Sandnes in the north to Hogemork in the south, and profile B extends from Lea in the northwest to Lauvdsen in the southeast. From Raunhoim et al. (2004).
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(A) open-work grainfall deposit
(oxidized) overlain by inversely graded
debris-flow deposits

(B) rhythmically laminated sand and
silt interpreted as suspension deposits

(C) chevron cross-laminated ripples

(D) ripples climbing towards the east,
against the general progradation
direction of the delta

(E) fluid escape above the chevron
ripples in (C)

(F) chute filled with normally graded
pebbles and sand

(G) syngenetic ice-wedge cast in the
middle part of subunit C,

(H) The contact between the Figgjo
gravel and the Foss-Eikeland diamicton

Figure 5 Sedimentary facies in subunit C;, the lower part of the Figgjo gravel (see Fig. 1 for location of 5a-h)

Modified from Raunholm et al. (2002).
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Fig. 6 The northern active gravel pit at Foss-Eikland. From Raunholm et al. (2002).



Geological evolution at Foss-Eikeland

(A) deglaciation:
coarse ice-contact
fans, westwards
fining of the sed.,
less outsized IRD;
slumps, fluid &
mollusc escape
structures-> high
sed. rate

(B) change from
small to large
epigenetic ice-
wedge casts->
periods without
sediment supply

(C) ice-proximal
environment, stable
or rising sea level

(D) wave and
current erosion,
grounded ice sheet
in a submarine
setting, Vagle
boulder bed
formation

lower part: high clay and low foram
content <-deposition below wave
base/ beneath sea ice

Legend

{|folding, faulting,

 [inland ice

terrestrial (marine limit

(E) high relative sea level->
deposition of the lower
part of Kalberg clay as a
laminated facies

(F) glacial advance->

brecciation

(G) deposition of
Kverneland diamiction, a till
deposited during the last
advance of the Weichselian

The final deglaciation at
Foss-Eikeland was

<25m a.s.l. around here)

Kverneland diamicton

Kalberg clay

composed of both debris flow and
till, may represent minor glacial
advance across the delta

Ly

sea level: 40-60m above the present

/V Figgjo gravel

deposition during a glacial advance

Vagle boulder bed -
Foss-Eikeland diamicton—-

P Orstad diamicton

upper part: more forams->
more open-marine
conditions

gradational contact

coarsening up, more
frequent diamict beds-> ice-
proximal environment

Figure 7 Summary of the geological evolution at Foss-Eikeland. Modified from Raunholm et al. (2002).



Site 2: Jaermuseet Vitengarden
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Fig. 8
Location of the study area. The arrows show three Late Weichselian ice-flow directions, with phase 1
showing the oldest ice flow direction. (Jonsdottir et al. 1999) Background maps from Norgeskart.

From Jonsdottir et al. (1999).




K The Norwegian Channel ice stream direction

( Inland ice direction
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The Jaren area can be divided into a high-land bedrock area in the East and a low-land sediment dominated area in the

West, which in turn borders to the Norwegian Channel. During LGM, while the Norwegian Channel was occupied by an
ice stream (direction indicated by blue arrows), the Jaren area was covered by inland ice (direction indicated by red
arrows). The inland ice was feeding the ice stream, which is supported by the type and direction of several landforms in
the Bryne/Nérbd area. The final deglaciation of Jdren took place around 13-14 ka BP. After Raunholm et al., 2003.




Site 3: Grgdaland
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Fig. 10 Locations of the sites discussed in the text and the present surface circulation in the North Sea and the Nordic Seas. EGC = East
Greenland Current, NC = Norwegian Current. JC = Jutland Current and NCC = Norwegian Coastal Current. From Sejrup et al. (1999).
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Fig. 11
Lithostratigraphical log of the new Gredeland core. Enlargements of parts of the log are also shown (A-D). Note the compressed scale
in the two diamictons (units 1 and 3) (Janocko et al., 1997). From Janocko et al. (1997).
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Fig.12 The lithostratigraphy of the Grodeland core. Note the break in depth scale in units 1 and 3. Facies codes are modified from Eyles
(1983). Modified from Janocko er al. (1997).
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unit 1 time: Unit 3 time:

Retreat

Subunit 2-1 time: Unit 4 fime:

Subunit 2-2 time: Unit 5 fime:

unit 1 - diamicton

2-1 subunit 2-1 sediments - mostly silt
2-2 subunit 2-2 sediments - sand and silt
2-3 subunit 2-3 sediments - silt and sand
3 unit 3 - diamicton
4 unit 4 - mostly sand
5 === unit 5 - diamicton
sk location of drilling

A bedrock

sea

glacier ice

Fig. 14

Inferred depositional environments for the entire sedimentary sequence at Gredeland. Unit 1 time - deposition of till; subunit 2-1 time -
glaciomarine sedimentation during glacier retreat: subunit 2-2 time - normal marine sedimentation in a storm-dominated environment;
subunit 2-3 time - glaciomarine sedimentation of subunit 2-3 evolving from normal marine conditions; unit 3 time - glacial conditions,
sedimeantation of {at least) the lower part of unit 3; unit 4 time - glaciomarine sedimentation of unit 4; unit 5 time - glacial conditions,
sedimentation of the uppermost till layer of unit 5 (Janocko et al., 1997).




Site 4: Lerbrekkvegen
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Fig.15 A. Location of the Norwegian Channel. Bathymetry contour interval 100 m. Ice limits after Sejrup ef al. (1998). E = Egersund,
K = Karmgy, OF = Oslofjorden, S = Stavanger and SD = Stad. B. Sun-shaded map of the study area of southern Lagjeren. Dashed lines
indicate the borders to hummocky morphology to the north and the Jren escarpment to the east. Morphological elements: 1-5 = drumlins
parallel to the Norwegian Channel; 6 and 7 = drumlins oblique to both terrestrial ice and coastal ice stream; 4 = Lerbrekk. C. Area covered
with side-scan sonar data, and Fig. 13 is located at ‘X’. From Stalsberg et al. (2003).
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Fig. 16. 3D model of investigated Lerbrekk ridge with location of excavations. B=Bratland, location of trench marked with white line.
Sampling sites are located on the logs. From Stalsberg et al. (2003).




Fig.17  Side-scan sonar image of the sea bottom on the Egersund
Bank in about 120 m of water depth. Dark linear elements trending
northwest—southeast are interpreted as glacial megaflutes (ridges)
related to the Norwegian Channel ice stream. Light areas indicate
sand between the ridges (from Ottesen ef al. 1999).




Site 5: Skrettingsvegen

Distance in km from Auestad
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120 \ <o i
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9rgvel pit [~ ~] Glaciomarine clay
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Fig. 18. (A). E-W profile crossing the southern part of the Jaeren escarpment showing correlation of units between
investigated sites. Stratigraphy from Auestad and Elgane taken from Janocko et al. (1998). Clast fabric analysis in tills from
sites 1 and 4 are plotted on a Schmidt net lower hemisphere. Arrows show interpreted ice-flow directions. Note the vertical
exaggeration. (B) Sketch of the Skretting gravel pit seen from the north. Photographs, sites for drilling (A) and detailed
logging (B, C and D) are indicated. From Stalsberg et al. (1999).



) . |
= 2 i) Glacial I
5 Lithology Dates _g © fluctuations ||  Sealevel
Sol+e—> 10 200
_ |
= W :
a |
5 |
o < N |
= < |
o = I
7] w ]
2 1
- |
O I
> — |
S, o |
g § tgg = i
'Em | :
)
T |
i3] |
. |
— f
S I
] = |
-§ : TL/OSL I
8« | TN N 145 ;
oE 149
cc | .
£5 ]
g 151 ! \
5 |
7)) |
|
I
|
= |
o |
) |
S |
E = W @
o5 I
£
= I
5 Z |
7 i :
-l T
© I
(] I \
[o)]
o @ |
T : I
© |
o |
£ |
® |
> |
n |
|
= |
= |
o |
2~ |
[ pe i
25 |
g |
£ |
7] |
19 200,

Fig. 19. Composite stratigraphy of the Skretting area. Relative sea-level is
indicated. Arrows show suggested ice-flow direction. Ae and Ab indicate amino
acid ratios from Elphidium excavatum and Bulimina marginata respectively.
Data from the Hagjeeren clay are derived from Janocko et al. (1998). Fgure
taken from Stalsberg et al. (1999).



0 2?0 m

Glacier

Glacier

Fig. 20. The reversal in flow direction during formation of Skretting sandur. (A)
The glacier front starts to retreat leaving space for sediment accumulation
between ice margin and marginal moraine and directs meltwater towards the
north. (B) Further ice-front retreat provides an opening towards the south and
changes flow direction. From Stalsberg et al. (1999).




Site 6: Elgane
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Fig. 21 Study area and names mentioned in the text.
A Part of southern Scandinavia with localization of Jeeren and the Norvegian Channel.

B Zoom on the Jaeren area showing: the main geological features in the region
(Grandsfjorden Lineament — dashed line, Jaeren escarpment separating Low Jeeren to High
Jeeren — grey), the division of the three different morphological regions in southern Jeeren
according to Segjrup et al. (1998) (Areas I to II), the Late Weischelian marine limit isobases
after Andersen et al. (1987), and the drill sites of Auestad and Elgane.
C Details of the study area with the two drill sites presented in the paper and other
sites discussed in the text. From Larsen et al. (2000).
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Fig.22 Diagram showing:

the stratigraphies of the investigated sites (Auestad and Elgane) and other sites
(Auestadjordet, Skretting, Oppstad, Smaelgane and Hogemork), with corresponding
local lithostratigraphical names and age of the unit;

the composite stratigraphy for the area with ice-flow directions (indicated by arrows);
inferred sea-level variations (compared to today's sea-level)

interpretations of the deposits. NCIS and TI correspond to Norwegian Channel Ice
Stream and Terrestrial Ice, respectively.

The local stratigraphies, dates and amino acid values are from Andersen et al. (1987, 1991),

Janocko

et al. (1998), Stalsberg et al. (1999) and this article (Larsen et al. 2000).
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Fig. 23 Interaction between the NCIS across Jeeren at the last glacial maximum (top left
comer) and during a glacier advance across the coaslline by terresirial-based ice about 18-15
ka ago, as the ice slream calved back in the Norwegian Channel (top right corner). The
boltom lefi comer shows some ice flow direclional data from areas below the Jeeren
escarpment. The bottom right map shows a more regional picture of the ice flow during a
maximum-type glaciation (modified from Sejrup et al. (1998)).
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Fig. 24. Map of western Norway, the Norwegian Channel and Jeeren (inset with darker shading 200 m a.s.l.). From Sejrup et al. (1998).
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Fig.26 (A) Overview map showing the location of the study arca Jacren (within box), adjacent to the Norwegian Channel. (B) Map of the southern part
of Jaren showing the location of the Hogjweren plateau and the sharp delineation between sediment covered areas to the west and bedrock dominated
areas to the cast and south. The distribution of sandy diamicton on the Hogjaren plateau is also shown. Striations and fabric measurements (Andersen
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Fig.29.A. Overview map of south Norway and the North Sea area, with the location of the study arca. The
bathymetry of the Norwegian Channel, the location of the Troll site, the Mélgy plateau and the main ice
divide during the last glacial maximum (LGM) are marked. B. Map of the Jaeren area, with locations of the
Torland, Stemmavatn and Helland sites marked. Previously investigated basins and the respective bottom
dates, representing minimum ages for deglaciation, are also shown. All ages are in cal yrs BP, calibrated
with OxCal v3.10 (Bronk Ramsey 2001, 2005), with the atmospheric data IntCal04 (Reimer ef al. 2004).
Ice flow directions of the Norwegian Channel Ice Stream (NCIS) and terrestrial ice from central S Norway
and the Younger Dryas (GS-1) ice margin position according to Andersen et al. (1987) is also shown. C.
Calibrated ages of bottom dates on mainly bulk sediment samples and aquatic moss from the Jzren area.
The symbol denoting the dates corresponds to the symbols that mark the localitics in A. The gray shaded
time span shows a rcasonable estimate for the timing of deglaciation in the Jacren area; between 17 000 and
15 000 cal yrs BP. Knudsen et al. (in prep).
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Fig. 30. (A) The ice extent during the last glacial maximum in the Jecren area. The border zone between the
northwards flowing Norwegian Channel Ice Stream (NCIS) and the terrestrial ice was situated east of the
present coastline, but was displaced westwards beyond the coastline when the NCIS collapsed (Sejrup et al.
1998; Larsen et al. 2000; Raunholm et al. 2003). The NCIS offshore of the Jeeren area disintegrated prior to
ca. 17 600 cal yrs BP. (B) Ice marginal positions at different times during retreat of the terrestrial ice in the
Jeeren area shown by stippled lines. The marginal positions arc approximatc and bascd on the data
presented in this paper in addition to data from (Andersen ef al, 1987; Ommedal, unpubl. data; Paus 1989a;
Paus 2003; Raunholm ef al. 2003; Knudsen ef al. 2006). 1) and 2) show the ice marginal advances mapped
by Raunholm ef al. (2003) and Knudsen ef al. (2006) respectively. The small black lines are proglacial
deposits as mapped by Andersen ef al. (1987). From Knudsen et al. (in prep.)
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Fig. 7. Diagram showing clast fabric data. clast lithologies, interpreted ice-flow direction, genetic interpretation of the upper

diamicton and grain size of till matrix (white = gravel, light grey

till (Fig. 7) (Dreimanis 1989). Because of a
uniform lithology and stratigraphical position,
the till at all sites in the southern region is
considered to be contemporaneous. Deformation
of sub-till glaciofluvial and glaciolacustrian sedi-
ments indicates ice-flow towards the north during
till deposition (Stalsberg, unpublished data).

Northern region: gravel-rich diamicton

Four sections were studied in the northern region;
Reime, Kvia-Jernbanen, Obrestad and Motland
(Fig. 3). The uppermost unit at all sections isal.5-
4 m thick gravel-sand rich diamicton, overlying

= sand. dark grey = silt, black = clay).

glaciofluvial and/or glaciolacustrine ~sediments
(Fig. 6).

The Obrestad, Reime and Kvia-Jernbanen sites
are considered to evidence lobe-formed marginal
moraines (Fig. 3). The two former sites differ
morphologically from the Kvia-Jernbanen site as
the sections are in ridges. The Obrestad section is
in a remnant of a ridge and the section has recently
been described by Janocko (1997), who interpreted
the former ridge to be a drumlin deposited by a
NW flowing glacier and later overridden by a SW
flowing glacier.

The uppermost diamicton at Obrestad and the
one at Kvia—Jernbanen are very similar (Fig. 6). At
both sites the diamicton is matrix-supported and
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Fig. 2. Geomorphology of the Bryne/Nerbo area (Fig. 1). A and B show the same area. but with different hill shading. A Toe 2ill shade is
from the northwest, highlighting NE-SW trending features (e.g. eskers and drumlinoid ridges in the northern part of the figeme ). Nomhers 1=2
mark the two investigated ridges at Kvile. B. The illumination is from the northeast. and ridges transverse to this are highlight=d. White lines

mark the most pronounced meltwater channels. Black circles mark ridges interpreted as marginal moraines by Sejrup er al. (1998). Jén<déuir
et al. (1999) and Stalsberg (2000).
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